
Floating-point library for PIC18 processors

version 1.03

This system library is available in two versions – both were prepared as a direct replacement of the

official floating-point library (__Lib_MathDouble.mcl) with removed problems that were inherited from

the original Microchip library. Second version additionally introduces math error exceptions. (I could

not use the try .. except keywords as these are reserved by the compiler, but, effectively, similar

program behaviour is possible.) The library produces significantly smaller code than the official one

and gives more accurate calculation results.

Problems that were corrected:

- lack of unbiased rounding,

- lack of rounding while converting to integer types,

- lack of big numbers 'rounding', i.e. conversion error reduction,

- max negative number reported as integer overflow,

- overflow for division by zero does not reflect sign of dividend,

– no protection against numbers with EXP=0 and significand<>0 that do not belong to

Microchip format.

The so-called unbiased rounding leads to increased calculations accuracy by forcing residual errors to

be 'unbiased', i.e. non-cumulative. It's lack of rounding that is mostly responsible for the trailing 9s

while converting real numbers to strings in the official library.

Added library features:

- exception mechanism for f-p math errors,

- f-p math operations status available with Get_FPstatus function,

- minreal, maxreal & epsreal constants.

There are just four public routines in MathDouble library (click on them to see their prototypes):

Clear_FPstatus

Get_FPstatus

FPerror

FPraise

Status of floating-point operations may be cleared with Clear_FPstatus procedure and read with

function Get_FPstatus. Available bits of the status byte are declared as constants:

 FP_IOV - integer types overflow flag

 FP_FOV - floating point overflow exception flag

 FP_FUN - floating point underflow exception flag

 FP_FDZ - floating point divide by zero exception flag

 FP_NAN - not-a-number flag

 FP_DOM - domain error flag

as well as values of the status byte in specified situations:

 FPS_IOV - integer types type overflow

 FPS_FOV - floating point overflow

 FPS_FUN - floating point underflow

 FPS_FDZ - floating point divide by zero (and overflow)

 FPS_NAN - not-a-number

 FPS_DOM - domain error

Boolean function FPerror is used for error testing in the exception mechanism. Exception is raised

automatically in case of overflow, underflow, or division by zero. One may raise an exception using

FPraise procedure with mask=0. Calling FPraise with mask containing any combination of FPS_IOV,

FPS_NAN, or FPS_DOM, will ensure exception if any of corresponding events that arise before the call.

Integer type overflow or domain error may be detected during conversion from real to integer types.

Calculation routines automatically correct real numbers with zero exponent and non-zero mantissa

(that do not belong to Microchip format) without setting the domain error flag. Not a Number flag

may be set during number conversion from IEEE 754 format to Microchip format or in case of

undefined result of some math functions, like sqrt or pow.

Exception mechanism may be used in a following way:

Code:

var status: byte;
 st: string[20];
 x,y: real;

 if not FPerror then

 begin

 y:=x/y;

 if y<0.0 then FPraise(0); // raise user-defined exception

 st:='success';

 end

 else

 begin

 stat:=Get_FPstatus;

 case stat of // determine exception cause

 0: st:='negative result'; // user-defined exception

 FPS_FOV: st:='overflow';

 FPS_FUN: st:='underflow';

 FPS_FDZ: st:='division by zero';

 end;

 end;

 Clear_FPstatus; // deactivate exceptions

If one converts numbers of type real to any integral type (whether explicitly or implicitly), adding

Fpraise(FPS_IOV) after conversion(s) will ensure raising an exception in case of this integral type

overflow. Similarly, Fpraise(FPS_NAN) may take care of signaling problems with conversion from IEEE

754 to Microchip format or with sqrt and pow calculations.

Another example:

Code:

procedure handle_FPerrors;
 begin
 // any necessary steps in case of fp-math error
 ...
 calc_error:=true;
 Clear_FPstatus; // deactivate fp exceptions & clear status
 End;{handle_FPerror}

begin
 ...
 calc_error:=false;
 if FPerror then handle_FPerrors
 else
 begin
 int_var:=integer(x/y);
 FPraise(FPS_IOV); // raise exception if integer overflow
 end

The exception mechanism ensures that the conditional if FPerror then ... will be executed when an

error occurs, even though it precedes the calculations.

And finally, somewhat less elegant solution:

Code:

 calc_error:=false;
 if FPerror then goto label1;
 y:=x/y;
 ...
 goto label2;
label1:
 // any necessary steps in case of fp-math error
 ...
 Clear_FPstatus; // deactivate exceptions
 calc_error:=true;
 ...
label2:

As mentioned previously, the MathDouble lib comes in two versions. When using the version with

exception mechanism, remember to call the Clear_FPstatus procedure at program beginning.

Naturally, one does not have to always use exception mechanism with the version equipped with it –

without activating the mechanism, calculations will be performed just like with the other version.

Due to introduction of rounding while converting to integer types (in both implicit and explicit

conversion), use of the replacement lib may require older code correction, as with the official lib

conversion was based on truncation (the fractional part of real number was simply omitted). This

issue is addressed by introducing a set of useful routines to the Trigon library – one of them, Trunc,

may be used whenever rounding is not wanted. There is also Round function which does nothing

more than explicit conversion for variables but should be used with constants or there will be a

difference between runtime and compile-time calculations.

When using the MathDouble replacement lib, one should also use the other replacement libs – both

the floating-point ones, Trigon and Trigonometry, and the Strings and Conversions libraries, on which

some floating-point routines depend.

Both str2float and Float2str (or FloatToStr) procedures from the Conversions library replacement may

still be used, though the new str2real and Real2str procedures from Trigon lib replacement are more

advanced and Real2str is much faster.

IMPORTANT: Starting from v. 1.00, the library requires presence of Math library replacement.

NOTE: When using the MathDouble lib version with the exceptions mechanism, software simulator

may stop on assembly code changing STKPTR that is part of the exception mechanism – in such case

one may use Step_Out to go back to Pascal code. Another solution is to use breakpoints to jump over

code that may cause f-p math error. Naturally, all works fine in real environment.

Manual library installation:

 - find mP PRO installation directory and subdirectory .../Uses/P18,

 - find original library file __Lib_MathDouble.mcl there and rename it,

 - unpack the replacement lib – there'll be two versions:

 __Lib_ MathDouble_exc.mcl

 __Lib_ MathDouble_no_exc.mcl

 choose one of them, change it's name to __Lib_ MathDouble.mcl and move the file to the

 .../Uses/P18 directory.

Have fun,

janni

MathDouble library - system fp-math routines for PIC18 processors

version 1.03
date 26.06.14

Revision history:

0.05 - modified for mP PRO 2.15, added status byte access
0.06 - added DOM test for conversion routines, simplified code
0.07 - added exception mechanism
0.08 – adjusted to Trigon and Trigonometry replacement libs
0.09 - FPstatus cleared in FPerror now, added FPraise
1.00 – combined with Math library
1.01 – compiled with mP PRO 5.0
1.02 – compiled with mP PRO 6.01, added minreal, maxreal and epsreal
1.03 – changed declarations of some constants

This is system library – most routines are not directly accessible. Those that are:

procedure Clear_FPstatus;
clears status of f-p math operations

function Get_FPstatus: byte;
reads status of previous f-p math operations

function FPerror: boolean;
used for fp-math error test; present only in the version with fp-math errors exceptions

procedure FPraise(mask:byte);
raises exception if error declared in mask took place before, or if mask=0 (user exception);
present only in the version with fp-math errors exceptions

A version string is declared that may be used in code for verification:

const Lib_MathDouble_ver: string[4]

